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The interaction of a travelling shock with the shear layer of a flat plate is studied

computationally. The Euler and Navier-Stokes equations are solved numerically on

quadrilateral unstructured adaptive grids. The flat plate is installed horizontally on the central

axis of a shock tube. The shear layer is first created by two shock waves at different speeds

splitted by a flat plate. A series of small vortices is developed as a consequence in the shear layer.

The shock wave reflected at the end wall impinges the shear layer. The complicated shock

dynamics in the evolution to the pseudo-steady state is represented with the morphological

transformation of a planar shock into an oblique shock.
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1. Introduction

The interaction of a shock-driven flow and a

slipstream of a supersonic jet has been regarded as
the primary source of screech-tone acoustic waves

that are critical for aircraft noises in aerospace

engineering. Basic study on shock-vortexlet

interaction will give us the proper understanding

of a simpler model in the viewpoint of flow

physics. The planar moving shock wave

interacting with the shear layer downstream of a

jet nozzle converges nearly to a steady state in

only a few milliseconds, but the gap between the

two states still remains to be hidden as a mystery.

The earlier researchers, Dosanjh and Weeks
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(1965), experimentally visualized the interaction

of a straight travelling shock wave and a Karman

vortex street behind a cylinder, but the extreme

complexity of the multiple-vortex model prod­

ucing a turbulent wake made it difficult to com­

prehend the essential physics. As computational

techniques are developed, primary attention is

focased on more fundamental problems like a

shock and single vortex interaction in terms of

proper numerical models (Meadows et.al., 1991;

Ellzey et.al., 1995; chatterjee, 1999). In their stu­

dies it was been elucidated that the shock-vortex

interaction generates the deformation of a shock

wave as well as the quadrupolar radiation of

acoustic waves.

The argument in this paper is motivated by the

previous studies on shock-shear layer interaction

and shock-vortex interaction. A simpler model

than Dosanjh and Weeks( 1965) based on a

practical experiment is introduced to restrain tur­

bulence in a given time scale. A plane shock wave

impinges successive multiple small vortices pro­

duced by Kelvin-Helmholtz instability along a
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Fig. 1 Definition of the present problem

2. Problem Definition

linear shear layer bounded by two fluid regions of

difference velocities. The Euler and Navier­

Stokes equations are solved numerically on

quadrilateral unstructured adaptive grids to

achieve effectively the sufficient resolution for

morphological shock wave transformation.

3.2 Quadrilateral unstructured adaptive
grid

Generally, quadrilateral grids have some

advantages over triangular grids widely used in

computational fluid dynamics. They show less

skewness and better quality for a simple geome­

try. Unstructured grid system can be created and

treated easily except for its complicated

connectivity. Besides, the adaptive grid may re­

duce the computing load without degrading the

resolution around stiff-gradient regions.

The error indicator of a cell is defined as the

sum of density or velocity differences (Chang and

Chang, 1999). We use the density-based error

indicator for Euler equations as

3.1 TVD high-resolution method
Finite-volume integral equations are derived

from the differential form of the Euler and Navier

-Stokes equations. The spatial fluxes of

convective terms are simply discretized by

applying the Gaussian divergence theorem. Ac­

cording to the Roe flux-difference scheme to

obtain approximate solutions of the Riemann

problem, the right-bounded numerical flux of a

cell is expressed as a combination of eigenvectors

(Roe, 1981). We take a central difference, for the

viscous flux, while the viscous flux is set to zero in

the Euler equations.

To obtain second-order accuracy, MUSCL

(Monotone Upstream-centered Schemes for Con­

servative Laws) algorithm is used with the van

Leer slope limiter (Hirsch, 1990). We can obtain

the instantaneous flow field at every time step by

the explicit time marching.
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Figure I shows the computational domain and

the initial condition for this problem. It is based

on a shock tube experiment (Chang, 2000) with

the driven-section pressure set egual to PI =0.5

atm. The driver gas is air (y= 1.4). The faster

shock, Ms = 1.41 (above the flat plate) starts 57

mm ahead of the slower shock, Ms = 1.22 (below

the flat plate). The flat plate with Imm thickness

has its aft tip sharply polished and aligned to the

flow direction.

The unsteady Euler and Navier-Stokes

equations are solved numerically. No-slip boun­

dary conditions are applied on the walls for the

Navier-Stokes equations while flow tangency

conditions are employed for the Euler equations.

A non-reflecting boundary condition is applied

at the left inlet of Fig. 1 (Hirsch, 1990).

The velocity-based error indicator for N avier­

Stokes equations is

where e is the cell index and CAe) denotes the

neighbor cell in the j direction. A cell is divided

into four equal subcells when the indicator in

Eqs. (I )-(2) exceeds a preset criterion. A reverse

action is taken when the error falls below the

3. Brief Description of the Numerical
Algorithm

A TVD high-resolution method is used to

solve the Euler and Navier Stokes equations with

the boundary conditions For more accurate and

efficient computations, we introduced a quadril­

ateral unstructured adaptive grid (QUAG) system

(de Zeeuw and Powell, 1993; Ko and Chang,

1998).
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Fig.2 Numerical simulation: Navier-Stokes solution
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criterion. This refinement/ unrefinement proce­

dure is repeated four to seven levels in every time

step during time integration. In comparison with

common structured grids, the unstructured grids

need more computer memory to store the data sets

of linked list and quadtree recording connectivity

of cells and refinement levels.
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2(1). In Fig. 2(1)-(g), the shock D interacts with

the multiple vortices in the shear layer to produce

a compressive wave such as C. The wave C is

attached to the wave A. It eventually merges with

A to form an oblique shock (OS) in Fig. 2(h).
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4.2 Structure and motion of the vortex
In Fig. 3(a) for tangential velocity, the Euler

simulation predicts the shear layer (the boundary

of rotational vortex core and outer potential flow)

more sharply than the Navier-Stokes simulation.

However, this difference is hardly found in Fig. 3

(b) for density profile. The qualitative structure is

not much changed between inviscid and viscous

simulations: see also the vortex trajectories in Fig.

4. The diffusion terms in the Navier-Stokes

300
4. Result and Discussion

Some representative constant density contours

or the isopycnics are plotted in Fig. 2(a)-(h), the

solution of Navier-Stokes equations. A constant

wall temperature is assumed, and the adaptive
level is set to five.

The entire flow regime is divided into two

stages: Fig. 2(a)-(c) are Stage I, and Fig. 2(d)-(h)

are Stage 2, as classified by the authors. The two

fluid layers at different velocities separated by the

flat plate are mixed in a curvilinear shear layer:

see Fig. 2(a)-(c). Multiple vorticities on the shear

layer are developed due to Kelvin-Helmholtz

instability. The travelling shock is reflected back

from the end wall of the shock tube in Fig. 2(d).

It produces successive shock-vortex interactions:
see Fig. 2(e)-(h).

4.1 On the overall physics

The upper shock (U) at Ms= 1.41 arrives at the

trailing edge of the flat plate ahead of the lower

shock (L) at Ms=1.22. In Fig. 2(a), U is

diffracted to produce a starting vortex (V) fed by

the shear layer (S) whereas L is yet to arrive at the

trailing edge. Figure 2(b) shows a shock-shock

interaction between the lower shock (L) and the

reflected shock (RI ) ofU, making a piece of Mach

stem (MI ) between the two triple points (Tr's).

The two shocks Land RI interact with V in

sequence. In Fig. 2(c), R I is reflected from the

upper wall to a secondary reflected shock (R2) . U

and RI make a triple point (T2) and a new Mach

stem (M2) with a slip line (52) emanating from T2•

As U is propagated downstream, M2 is extended

to the original shape of a plane shock (I) in Fig.

2(d). The reflected shock R I , R2, and R3 are all

parasitic waves, not directly related with the

present discussion.

The vortex (V) is rotating in the clockwise

direction. Therefore, the shock I is deformed by

the vortex with the accelerated wave (A) and the

decelerated shock (D) (sivier, et al., 1992). The

wave A is accelerated to a circular form and it is

in interaction with D to make a third Mach stem

(M3) connected to the triple points (T{s): see Fig.
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4.3 Morphological transformation of shock

waves
The returning shock (I) heads into the small

multiple vortices in the shear layer of the flat plate
in Fig. 2(e)-(h). As a result of successive

interactions with the vortices, an envelope of the

strong compression wave (C) is produced: see

(3)
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Fig. 5 Final stage of the morphological
transformation

Fig. 2(g). This wave C merges with the preceding

shock to form a fortified oblique shock (OS) in

Fig. 2(h).

The instantaneous streamlines near the two­

fluid boundary are parallel to the slip stream (S),

which we call the shear layer. It conceptually has

a finite thickness in the viscous model. Owing to

the clockwise motion of the vortices, the shear

layer is lifted up in the downstream direction to

form a ramp when viewed from the observer

drifting at the shock speed. Although the head

wind from the inlet above the flat plate is

subsonic, its relative velocity in the shock-fixed

frame is supersonic. It is becauce the OS is mov­

ing upstream with

Here, M, is the relative flow Mach number, M illiet

is the inlet head-wind Mach number, Mos is the

shock Mach number of OS, and Oi is the incident
angle of OS to the inlet flow. In Fig. 2(h), using

the flow data M illiet =0.66,Mos=0.68,and fA =42.30,

the relative flow Mach number becomes Mi = 1.12

(supersonic) according to Eq. (3). u,» I or u,«
I is an important criterion related with temporal

stability of a moving shock wave. When it is

supersonic, the oblique shock (OS) will propagate

preserving its shape. Otherwise, the shock will

turn to fade out. A shock can exist even in

subsonic field, althoagh it needs a supersonic

relative velocity by the fundamental rule in gas

dynamics.

In Fig. 5, a schematic sketch is drawn for the

shock and shear layer interaction. The oblique

shock (OS) originates from the ramp-like shear

layer, or slip line (S) and reflected from the upper

wall to make a Mach stem (M4) and a slip line

(54). We can also identify these waves in Fig. 2

(h). The process of the morphological

x

Fig. 4 Vortex motion
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equations play the role of dissipation, which is

very small during a short time scale.
The vortex structure is investigated by velocity

(Ul) and density (p) distributions along the verti­
cal line, AB, through the instantaneous center of

main vortex in Fig. 3(a)-(b). The line AB at x=
190 mm are marked in Fig. 2(d). In the Cartesian

coordinate system, x=O is defined at the trailing

edge of the splitter plate. The dashed lines are

from the Euler solution and the solid lines are

from the Navier-Stokes solution. The flow region

is cleanly divided into the solid-rotating vortex

core and the outer field. Density is the minimum
at the vortex core. At the peek velocity in Fig. 3

(a), the difference between the two simulations

contains a relative error about 15 %.
The discernable vortices are numbered Vi,

V;, ... in Fig. 2(d), and Fig. 4 is the trajectory of

their centers. At first, they are deflected vertically

by the incident shock (I), and sequentially sucked

into the main vortex. It is observed that the shock
wave even can split a vortex: see Fig. 2(h) where

the shock R 1 splits ~ into two subvortices: only

the bigger left one is traced in Fig. 4.
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transformation from the shocks U and L in Fig. 2

(a) is completed resulting in the shocks OS and A.

5. Concluding Remarks

The interaction of a shock wave and multiple

vortices has not been modeled clearly since the

experimental investigation in 1965(Dosanjh and

Weeks). The short time scale (-2.5 msec) in the

present model allow us to avoid turbulence in a

shock tube, so investigation on the morphological

transformation of shock waves become more fea­

sible. The dimensional analysis on the time scale

can be found in Chang(2000). The finite-volume

Euler and Navier-Stokes code based on the TVD

high-resolution method and the quadrilateral

unstructured adaptive grid system is adopted to

solve the present problem.

Successive interaction of the incident shock and

multiple small vortices first produces a

compressive wave (C) which is merged into the

preceding shock wave (OS): see Fig. 2(g)-(h).

The shear layer parallel to the streamline of the

mixing jet forms a ramp due to the vortex motion

while the new oblique shock (OS) in the pseudo

-steady state is generated. At the initial state of

Stage 2, Fig. 2(d), the shock I collides successively

with the vortices V, Vi, V2, .... At the final state,

Fig. 2(h), the new shock OS and its reflections

(R1 and M4 ) are generated by the morphological

transformation.

One of our primary question is "How much

important is the viscosity in such problems? ".

We conclude that viscosity cannot change the

flow and the wave structure without turbulence

although the effect may be noticed qualitatively in

Fig. 3(a), for example.
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